This book is mainly targeted at high school / college kids who feel their learning efforts are not paying off, teachers who are on the look out for effective instruction techniques, parents who are concerned with their child’s academic results and want to do something about it.

The author of the book, Dr. Barbara Oakley, has an interesting background. She served in the US army as a language translator before transitioning to academia. She is now a professor of engineering at Oakland University in Rochester, Michigan. In her book, she admits that she had to completely retool her mind. A person who was basically in to artsy kind of work had to read hard sciences to get a PhD and do research. Needless to say the transition was a frustrating experience.  One of her research areas is neuroscience where she explores effective human learning techniques. The author claims that her book is essentially meant to demystify some of the common notions that we all have about learning.

This book is  written in “personal journal” format,i.e. with images, anecdotes, stories etc. It is basically a collection of findings that are scattered in various places such as academic papers, blogs, pop science books. So, this book does the job of an “aggregator” , ,much like a Google search, except that the results are supplemented with comments and visuals.

Some of the collated findings mentioned in the book are  :

1) Focused vs.. Diffused mode of thinking : Tons of books have already been written on this subject. The book provides a  visual to remind the reader the basic idea behind it.


In the game “pinball,” a ball, which represents a thought, shoots up from the spring-loaded plunger to bounce randomly against rows of rubber bumpers. These two pinball machines represent focused (left) and diffuse (right) ways of thinking. The focused approach relates to intense concentration on a specific problem or concept. But while in  focused mode , sometimes you inadvertently find yourself focusing intently and trying to solve a problem using erroneous thoughts that are in a different place in the brain from the “solution” thoughts you need to actually need to solve the problem. As an example of this, note the upper “thought” that your pinball first bounces around in on the left-hand image. It is very far away and completely unconnected from the lower pattern of thought in the same brain. You can see how part of the upper thought seems to have an underlying broad path. This is because you’ve thought something similar to that thought before. The lower thought is a new thought— it doesn’t have that underlying broad pattern. The diffuse approach on the right often involves a big-picture perspective. This thinking mode is useful when you are learning something new. As you can see , the diffuse mode doesn’t allow you to focus tightly and intently to solve a specific problem— but it can allow you to get closer to where that solution lies because you’re able to travel much farther before running into another bumper.

2)  Spaced repetition : This idea has lead a massive research area in the field of cognitive psychology. The book nails it with the following visual :


Learning well means allowing time to pass between focused learning sessions , so the neural patterns have time to solidify properly. It’s like allowing time for the mortar to dry when you are building a brick wall, as shown on the left. Trying to learn everything in a few cram sessions doesn’t allow time for neural structures to become consolidated in your long-term memory— the result is a jumbled pile of bricks like those on the right.

3) Limited short term memory :
Experiments have shown that you can at max hold 4 items in your working memory. This means the key to making sense of stuff lies in effective storage and retrieval of concepts/ideas from your long term memory than trying to cram everything in to working memory(which will anyway vanish quickly)

4) Chunking : From KA Ericsson (academician behind the notion of “deliberate practice{ ) to Daniel Coyle (pop science book author)  -  all have emphasized this aspect. Again a visual to summarizes the key idea :


When you are first chunking a concept, its pre-chunked parts take up all your working memory, as shown on the left. As you begin to chunk the concept, you will feel it connecting more easily and smoothly in your mind, as shown in the center. Once the concept is chunked, as shown at the right, it takes up only one slot in working memory. It simultaneously becomes one smooth strand that is easy to follow and use to make new connections. The rest of your working memory is left clear. That dangling strand of chunked material has, in some sense, increased the amount of information available to your working memory, as if the slot in working memory is a hyperlink that has been connected to a big webpage.

5) Pomodoro to prevent procrastination : Knowledge scattered around various blogs and talks are put in one place. The idea is that that you do work in slots of (25min work + 5 min break).image

6) { (Recall + Test > Reread) , ( Interleave + Spaced repetition > massed practice )  }
– These ideas resonate through out the book “Make it Stick”. This book though summarized the ideas and supplements them with this visuals such as :


Solving problems in math and science is like playing a piece on the piano. The more you practice, the firmer, darker, and stronger your mental patterns become.


If you don’t make a point of repeating what you want to remember, your “metabolic vampires” can suck away the neural pattern related to that memory before it can strengthen and solidify.

7) Memory enhancement hacks :
Most of the ideas from “Moonwalking with Einstein” and other such memory hack books are summarized for easy reading

8) Reading / engaging in diverse material pays off : This has been a common trait amongst many people who do brilliant stuff. Pick up any person who has accomplished something significant, you will find they have varied interests.


Here you can see that the chunk— the rippling neural ribbon— on the left is very similar to the chunk on the right. This symbolizes the idea that once you grasp a chunk in one subject, it is much easier for you to grasp or create a similar chunk in another subject. The same underlying mathematics, for example, echo throughout physics, chemistry, and engineering— and can sometimes also be seen in economics, business, and models of human behavior. This is why it can be easier for a physics or engineering major to earn a master’s in business administration than someone with a background in English or history. Metaphors and physical analogies also form chunks that can allow ideas even from very different areas to influence one another. This is why people who love math, science , and technology often also find surprising help from their activities or knowledge of sports, music, language, art, or literature.

9) Adequate sleep is essential for better learning : This is like turning the lights off on the theatre stage so that artists can take a break, relax and come back for their next act. Not turning off the mind and overworking can only lead us to an illusion of learning, when in fact all we are doing is showcasing listless actors on the stage(working memory).


Toxins in your brain get washed away by having an adequate amount of sleep everyday.

The book can easily be read in an hour or two as it is filled with lot of images/ metaphors/ anecdotes and recurrent themes. The content of this book is also being offered in the form of  4 week course at Coursera

Lady Luck favors the one who tries

– Barbara Oakley